Определение термина IEEE 802.11A и что он означает. Коммуникации и сети. Словарь компьютерных и технических терминов, глоссарий
  Компьютерный портал Hardvision Digital Сделать домашней Добавить в Избранное Обновить Напишите нам!
На главную | Карта портала | Реклама на сайте | Сегодня Среда, 25 декабря 2024
Видео, графика Звук Материнские платы Мониторы, дисплеи Носители информации Коммуникации и сети Сотовая связь
Общая тематика Принтеры Программное обеспечение Процессоры Память Электроника Компьютерная безопасность
Поиск

Последние новости

 Читать еще новости
»
»
»
»
»
»
»
»
»
»

Хочу на портале

Мы рассмотрим все Ваши предложения и пожелания!

 

Фотоальбомы, фоторамки, печать фотографий

Словарь компьютерных и технических терминов, глоссарий

Коммуникации и сети


IEEE 802.11a - Стандарт IEEE 802.11а

Когда IEEE в 1999 г. ратифицировал спецификации беспроводных сетевых коммуникаций 802.11а и 802.11b, он преследовал цель создать основанные на стандартах технологии, которые могли бы покрыть широкий класс схем кодирования на физическом уровне, диапазон частот и типов приложений, аналогично тому, как 802.3 Ethernet предоставляет пропускную способность от 10 до 1000 Mbps, используя разные физические среды. Всего лишь год спустя на рынке появился широкий выбор продуктов 802.11b (а еще через год 802.11g) от многочисленных производителей, тогда как устройства стандарта 802.11а были выпущены на год позже. Многие склонны объяснять это тем, что первый получил поддержку таких известных компаний, как Lucent Technologies и Intersil (бывшая Harris Semiconductor).

Стандарт 802.11а, который обеспечивает скорость передачи данных до 54 Mbps, должен сыграть для 802.11b ту же роль, какую Fast Ethernet сыграл для стандарта Ethernet 10 Base-T. Подобно обеим версиям Ethernet два беспроводных стандарта используют один и тот же механизм управления доступом к среде (Media Access Control -- MAC). Однако если в Fast Ethernet применяется та же схема кодирования, что и в низкоскоростном Ethernet, то в 802.11а -- совершенно отличная от 802.11b схема, называемая мультиплексированием с разделением по ортогональным частотам (Orthogonal Frequency Division Multiplexing -- OFDM). Итак, что же такое...

По сути, OFDM является частным случаем техники передачи данных с использованием множества несущих (MultiCarrier Modulation -- MCM). Главный принцип MCM заключается в том, чтобы разделить основной поток бит на ряд параллельных подпотоков с низкой скоростью передачи и затем использовать их для модуляции нескольких несущих (поднесущих). При этом, вообще говоря, к каждой из поднесущих может быть применена любая техника модуляции. Общая структура MCM-системы представлена на рис. 1.

Традиционный метод разделения полосы пропускания заключается в применении частотных фильтров. Хорошо известным примером этой техники является мультиплексирование с разделением по частотам (Frequency Division Multiplexing -- FDM). На рис. 2 представлены типичные спектральные кривые для трех подканалов FDM. Чтобы избежать межканальной интерференции, спектры подканалов должны быть разделены защитной полосой. Такое требование приводит к неэффективному использованию выделенного частотного диапазона.

Применение преобразования Фурье позволяет разделить частотный диапазон на поднесущие, спектры которых перекрываются, но все остаются ортогональными. Ортогональность поднесущих обозначает, что каждая из них содержит целое число колебаний на период передачи символа. Как видно из рис. 3, спектральная кривая любой из поднесущих имеет нулевое значение для "центральной" частоты смежной. Именно эта особенность спектра поднесущих и обеспечивает отсутствие интерференции между ними. В приведенном примере максимумы разделены диапазоном 300 Hz.

Еще одним преимуществом OFDM является ее устойчивость к так называемому эффекту многолучевого запаздывания. Он вызывается тем, что излученный сигнал, отражаясь от препятствий, приходит к приемной антенне разными путями. Это может привести к искажениям за счет межсимвольной интерференции. Для ослабления эффекта многолучевого запаздывания символы передаются с большим периодом. Устойчивость может быть повышена путем добавления защитного временного периода между передаваемыми символами. Обычно используют циклическое расширение -- конечную часть волны, кодирующей символ, добавляют к начальной части. Это увеличивает длину символа, не нарушая ортогональности. Кроме того, циклическое расширение позволяет выбрать окно для преобразования Фурье в любом месте временного интервала символа (рис. 4).

Физический уровень

Стандарт 802.11a предусматривает использование полосы частот 5,15--5,825 GHz и скорость передачи данных до 54 Mbps. Полоса поделена на три рабочие зоны, каждая из которых имеет ширину 100 MHz и максимально допустимую мощность излучаемого сигнала (в США). Первые 100 MHz в нижней части диапазона (5,15--5,25 GHz) ограничены выходной мощностью 50 мВт, излучаемая мощность в средней зоне (5,25--5,35 GHz) не должна превышать 250 мВт, а в верхней зоне (5,725--5,825 GHz) -- 1 Вт. Предполагается, что верхняя зона частот будет использоваться для каналов, соединяющих здания, или других наружных приложений, тогда как две другие зоны -- для применения внутри зданий.

Схема модуляции

Высокая скорость передачи достигается за счет группировки множества низкоскоростных подканалов (поднесущих). Это выполняется следующим образом. Две нижние зоны делятся на восемь неперекрывающихся каналов шириной 20 MHz. В свою очередь, каждый канал разбивается на 52 подканала по 300 kHz (рис. 5). Из них 48 подканалов используются для передачи данных, а остальных четыре -- для кодов коррекции ошибок. Устройства, удовлетворяющие стандарту 802.11a, должны поддерживать скорости передачи 6, 9, 12, 18, 24, 36, 48 или 54 Mbps. Такое многообразие скоростей достигается с помощью применения различных схем кодирования. Так, на нижнем уровне иерархии скоростей используется бинарная фазовая модуляция (Binary Phase Shift Keying -- BPSK). Она обеспечивает пропускную способность подканала 125 Kbps, что, умноженное на 48, дает 6 Mbps для одного канала. Квадратурная фазовая модуляция (QPSK) удваивает это значение, доводя его до 12 Mbps.

Последующего удвоения удается добиться с помощью 16-уровневой квадратурной амплитудной модуляции (16QAM), которая кодирует 4 бита информации на 1 Hz, а применение схемы 64QAM дает скорость передачи данных 54 Mbps. В итоге восемь каналов предоставят суммарную пропускную способность 423 Mbps с поддержкой 512 пользователей. Безусловно, это не означает, что каждый из пользователей сможет передавать и получать данные со скоростью 54 Mbps, они будут просто разделять полосу пропускания в зоне покрытия определенного канала. Заметим, что стандарт 802.11b поддерживает лишь три неперекрывающихся канала по 11 Mbps каждый, т. е. обеспечивают суммарную полосу пропускания только 33 Mbps.

Генерация OFDM-сигнала

При формировании OFDM-сигнала необходимо обеспечить ортогональность поднесущих. Поэтому сначала, исходя из характера входных данных, определяются требуемый частотный спектр и необходимая схема модуляции. Каждая поднесущая связывается со своим подпотоком данных. Амплитуда и фаза поднесущей вычисляются на основе выбранной схемы модуляции (BPSK, QPSK или QAM). Затем с помощью обратного преобразования Фурье (ОПФ) амплитуда как функция фазы преобразуется в функцию от времени (преимущественно используется вариант обратного быстрого преобразования Фурье -- ОБПФ). Принимающая аппаратура с помощью БПФ преобразует амплитуду сигналов как функцию от времени в функцию от частоты, генерируя при этом набор ортогональных синусоид (рис. 6).

Безусловно, стандарт 802.11a представляет следующую генерацию беспроводных сетей корпоративного уровня. В то же время, поскольку стандарты 802.11a и 802.11b предусматривают разные частоты, то переход на более быструю технологию потребует значительных затрат. Однако особенности локального рынка позволяют предположить, что если в Украине начнется развертывание беспроводных сетей, то они будут базироваться на высокоскоростном стандарте.

См. так же IEEE


Все еще ищите незнакомое вам слово или его определение? Хотите знать что это значит? Сообщите нам! Мы найдем нужный Вам материал и вышлим ссылку на адрес эл. почты.

Другие термины


Последние термины в этой категории
Топ 10 в этой категории
100Base-FX
OSI [open system interconnection] ВОС [Взаимодействие открытых систем]
OSI model Модель OSI
data link layer Канальный уровень
network layer Сетевой уровень
transport layer Транспортный уровень
session layer Сеансовый уровень
PY [phisical layer] Физический уровень
representation layer Представительский уровень
application layer Прикладной уровень
 
Conference Конференц-связь
OSI model Модель OSI
MAC Layer [Media Access Control] Уровень управления доступом к среде
WLAN [Wireless Local Area Network] Беспроводная локальная сеть
KVM [Keyboard Video monitor Mouse] КVM-переключатель
IEEE 802.16 Стандарт IEEE 802.16
P2P [peer-to-peer]
GPRS [General Packet Radio Service] Система пакетной передачи данных
WiMax [Worldwide Interoperability for Microwave Access]
IEEE 802.20 Стандарт IEEE 802.20

Осталные термины в данной категории

Централизованная топология
Децентрализованная топология
Иерархическая топология
Гибридная топология: децентрализованная + централизованная
100Base-FX
100Base-T
100Base-TX
10Base-2
10Base-5
10Base-F
10Base-T
1XRTT
3G [3 generation]
Access рoint
ACK [Acknowledgement]
Aerial, antenna
AMPS
application layer
AUP [Acceptable use policy]
Bluetooth
Bridge
Broadband
Call Holding
Call waiting
CLIP [Calling Line Identification Presentation]
CLIR [Calling Line Identification Restriction]
Closed User Group
Conference
D-AMPS
data link layer
DECT
DSL модем
DSL [Digital Subscriber Line]
DTMF [Dual Tone Multi Frequency]
Dual Band
Dual SIM
E-GPRS
EDGE [Enhanced Data rates for Global Evolution]
EFR [Enhanced Full Rate]
Ethernet
FCC [Federal Communications Commission]
Fixed Wireless
FR [full rate]
Gateway
GbE [Gigabit Ethernet]
GPRS [General Packet Radio Service]
GPS [Global Positioning System]
Handsfree
HotSpot
HR [Half Rate]
Hub
Hub Link
IEEE 802. 3
IEEE 802. 5
IEEE 802.11a
IEEE 802.11b
IEEE 802.11g
IEEE 802.16
IEEE 802.20
IMT-2000
IN [Intelligent Network]
Integrated PDA
IP [Internet Protocol]
IPv4 [Internet Protocol version 4]
IPv6 [Internet Protocol version 6]
KVM [Keyboard Video monitor Mouse]
LAN [local area network]
MAC Layer [Media Access Control]
MAN [Metropolitan Area Network]
MIB [Management Information Base]
Modem
MPT1327
NAT [network address translation ]
network layer
NMT-450
OSI model
OSI [open system interconnection]
P2P [peer-to-peer]
PCI [Protocol Control Information]
Proxy
PY [phisical layer]
RACF [Radio Access Control Function]
Repeater
representation layer
RFC [Request For Comments]
RJ-45
RLL [Radio in the Local Loop]
Roaming
Router
Router ID
RTF [Radio Terminal Function]
session layer
SIM Card
SMDS [Switched Multimegabit Data Service]
SMS [Short Message Service]
SNMP [Simple Network Management Protocol]
Standby Time
Talk Time
TCP/IP [Transmission Control Protocol/Internet Protocol]
TDMA
Token bus network
Token-Ring Network
transport layer
UL 1459
UMTS [Universal Mobile Telecommunication System]
UWC [Universal Wireless Communication Consortium]
VJ-compression
VLR [visitor location register]
VoIP [Voice Over Inernet Protocol]
WAP [Wireless Access Protocol]
WCDMA [Wide-CDMA]
WCDMA-DS
WDM [Wavelength-division multiplexing]
Wi-Fi [wireless fidelity]
WiMax [Worldwide Interoperability for Microwave Access]
WIN [Wireless Intelligent Network]
WLAN [Wireless Local Area Network]
WLL [Wireless Local Loop]

Последние термины

 » Читать еще термины
»100Base-FX
»IEEE [Institute of Electrical and Electronics Engineers] » ИИЭЭ [Институт инженеров по электротехнике и электронике]
»ANSI [American National Standards Institute] » НИС [Национальный Институт Стандартизации США]
»OSI [open system interconnection] » ВОС [Взаимодействие открытых систем]
»ISO [International Standards Organization] » МОС [Международная Организация по стандартизации]
»OSI model » Модель OSI
»data link layer » Канальный уровень
»network layer » Сетевой уровень
»transport layer » Транспортный уровень
»session layer » Сеансовый уровень
»PY [phisical layer] » Физический уровень
»representation layer » Представительский уровень
»application layer » Прикладной уровень
»100Base-T
»100Base-TX

Рассылка
Файлы
Новости
Статьи


Авторские права HardVision Digital © 2001-2024 | Дизайн и программирование by {digit}
При использовании материалов сайта, ссылка на источник обязательна.
Ведется регулярная проверка ворованного контента в Интернете алгоритмом Copyscape.