Определение термина SDRAM [SYNCHRONOUSE DRAM] и что он означает. Память. Словарь компьютерных и технических терминов, глоссарий
  Компьютерный портал Hardvision Digital Сделать домашней Добавить в Избранное Обновить Напишите нам!
На главную | Карта портала | Реклама на сайте | Сегодня Среда, 25 декабря 2024
Видео, графика Звук Материнские платы Мониторы, дисплеи Носители информации Коммуникации и сети Сотовая связь
Общая тематика Принтеры Программное обеспечение Процессоры Память Электроника Компьютерная безопасность
Поиск

Последние новости

 Читать еще новости
»
»
»
»
»
»
»
»
»
»

Хочу на портале

Мы рассмотрим все Ваши предложения и пожелания!

 

Фотоальбомы, фоторамки, печать фотографий

Словарь компьютерных и технических терминов, глоссарий

Память


SDRAM [Synchronouse DRAM] - Синхронное ОЗУ

Что такое SDRAM?

Синхронная оперативная память (SDRAM) - это первая технология оперативной памяти со случайным доступом (DRAM) разработанная для синхронизации работы памяти с тактами работы центрального процессора с внешней шиной данных. SDRAM основана на основе стандартной DRAM и работает почти также, как стандартная DRAM, но она имеет несколько отличительных характеристик, которые и делают ее более прогрессивной:

Синхронная работа SDRAM в отличие от стандартной и асинхронной DRAMs, имеет таймер ввода данных, таким образом системный таймер, который пошагово контролирует деятельность микропроцессора, может также управлять работой SDRAM. Это означает, что контроллер памяти знает точный цикл таймера на котором запрошенные данные будут обработаны. В результате, это освобождает процессор от необходимости находится в состоянии ожидания между моментами доступа к памяти.

Общие свойства SDRAM

- Синхронизированна по тактам с CPU
- Основана на стандартной DRAM, но значительно быстрее - вплоть до 4 раз
- Специфические свойства:
синхронное функционирование,
чередование банков ячеек,
возможность работы в пакетно-конвейерном режиме
- Основной претендент для использования в качестве основной памяти в персональных компьютерах следующего поколения
Банки ячеек - это ячейки памяти внтри чипа SDRAM, которые разделяются на два, независимых банка ячеек. Поскольку оба банка могут быть задействованны одновременно, непрерывный поток данных может обеспечиваться простым переключением между банками. Этот метод называется чередованием, и он позволяет снизить общее количество циклов обращения к памяти и увеличить, в результате, скорость передачи данных. пакетный режим ускорения - это техника быстрой передачи данных, при которой автоматически генерируется блок данных (серия последовательных адресов), в каждый момент, когда процессор запрашивает один адрес. Исходя из предположения о том, что адрес следующих данных, которые будут запрошенных процессором, будет следующим, по отношению к предыдущему запрошенному адресу, который обычно истиный (это такое же предсказание, которое используется в алгоритме работы кэш-памяти). Пакетный режим может применятся как при операциях чтения (из памяти), так и при операзиях записи (в память).

Теперь о фразе, что SDRAM более быстрая память. Даже при том, что SDRAM основана на стандартной DRAM архитектуре, комбинация указанных выше трех характеристик позволяет получит более быстрый и более эффективный процесс передачи данных. SDRAM уже может передавать данные со скоростью вплоть до 100MHz, что почти в четыре раза быстрее работы стандартной DRAM. Это сиавит SDRAM в один ряд с более дорогой SRAM (статическое ОЗУ) используемой в качестве внешней кэш-памяти.

Почему именно SDRAM?

Поскольку оперативная память компьютера хранит в себе информацию, которая требуется CPU для функционирования, время прохождения данных между CPU и памятью является критичным. Более быстрый процессор может увеличить производительность системы только, если он не попадает в состояние цикла "поторопись и подожди", в то время, как остальная часть системы борется за то, чтобы оставаться в этом состоянии. К несчастью, с тех пор, как Intel представила пятнадцать лет тому назад свой процессор x286, обычные микросхемы памяти больше не в состоянии идти в ногу с чрезвычайно возросшей производительностью процессоров.

Стандартная, асинхронная DRAM работае без управления ввода таймером, который не требовался для передачи данных вплоть до второго десятилетия развития микропроцессоров. Начиная с этого момента, в системах с более быстрыми процессорами, которые используют стандартную DRAM необходимо принудительно устанавливать состояния ожидания (временные задержки), чтобы избежать переполнения памяти.Состояние ожидания, это когда микропроцессор приостанавливает исполнение всего, что он делает, пока другие компоненты не перейдут в режим приема команд.По этой причине, новые технологии памяти внедряются не только с целью увеличения скорости обмена, но также и с целью сокращения цикла поиска и выборки данных. Перед лицом возникших требований, изготовителями микросхем памяти были представлены серии новшеств, включающие память страничного режима, статического столбца, чередующиюся память, и FPM DRAM (быстространичного режима). Когда скорости процессоров возросли до частот 100MHz и выше, разработчики систем предложили для использования небольшой высокоскоростной внешний кэш SRAM (кэш второго уровня), а также новую быстродействующую память тиа EDO (расширенный доступ к данным) и BEDO (пакетно-расширенный доступ). FPM DRAM И EDO DRAM наиболее часто применяемая памяти в современных PC, но их асинхронная электрическая схема не предназначена для скоростей более 66MHz (максимум для BEDO). К несчастью, это фактор ограничивает сегодняшние системы, на основе процессоров типа Pentium с тактовой частотой более 133MHz, частотой по шине памяти величиной в 66MHz.

Появление SDRAM.

Первоначально, SDRAM была предложена в качестве более дешевой по стоимщсти альтернативы для дорогой видеопамяти VRAM (Video RAM), используемой в графических подсистемах. Тем не менее, она быстро получила применение во многих приложения и стала кандидатом номер один на роль основной памяти для следующих поколений PC.

Как работает SDRAM?

SDRAM производится на основе стандартной DRAM и работает также, как стандартная DRAM - осуществляя доступ с строкам и колонкам ячеек данных. Только SDRAM объединяет свои специфичные свойства синхронного функционирования банков ячеек, и пакетной работы, для эффективного устранения состояний задержек-ожидания. Когда процессору необходимо получить данные из оперативной памяти, он может получить их в требуемый момент. Таким образом, фактическое время обработки данных непосредственно не изменилось, в отличии от увеличения эффективности выборки и передачи данных. Для того, чтобы понять как SDRAM ускоряет процесс выборки и поиска данных в памяти, представьте себе, что центральный процессор имеет посыльного, который возит тележку по зданию оперативной памяти, и каждый раз ему нужно бросать или подбирать информацию. В здании оперативной памяти клерк, отвечающий за пересылку/получение информации, обычно тратит около 60ns, чтобы обработать запрос. Посыльный знает только, сколько требуется времени, чтобы обработать запрос, после того, как он получен. Но он не знает будет ли готов клерк, когда он приедет к нему, так что обычно он отводит немного времени на случай ошибки. Он ждет, пока клерк не будет готов получить запрос. Затем он ожидает обычное время, требующееся для обработки запроса. А затем, он задерживается, чтобы проверить, что запрошенные данные загружены в его тележку, прежде, чем отвезти тележку с данными обратно центральному процессору. Предположим, с другой стороны, что каждые 10 наносекунд пресылающий клерк в здании оперативной памяти должны быть снаружи и готовым получить другой запрос или ответить на запрос, который был получен ранее. Это делает процесс более эффективным, поскольку посыльный может прибыть именно в нужное время. Обработка запроса начинается в момент его получени. Информация посылается в CPU, когда она готова.

Какие преимущества в производительности?

Время доступа (комманды по адресу до выбора данных) одинаково для всех типов памяти, как видно из таблицы выше, поскольку их внутренняя архитектура в основном одинакова. Более показательным параметром является время цикла, который показывает, насколько быстро можгут быть осуществлены два последовательных доступа в чипе. Первый цикл считывания одинаков для всех четырех типов памяти - 50ns, 60ns или 70ns. Но реальные различия можно увидеть, посмотрев как быстро осуществляется второй, третий, четвертый, и т.д. цикл считывания. Для этого мы посмотрим на время цикла. Для "-6" FPM DRAM (60ns), второй цикл может быть осуществлен за 35ns. Сравните это с "-12" SDRAM (время доступа 60ns), когда второй цикл считывания проходит за 12ns. Это в три раза быстрее, и при этом, без какой-либо значительной переделки системы!

Наиболее значимые улучшения производительностьи при использовании SDRAM:

- Более быстрая и более эффективная - почти в четыре раза производительнее, чем стандартная DRAM
- Потенциально может заменить более дорогостоящую в использовании комбинацию EDO/L2-кэш, являюшуюся сейчас стандартом
- "При синхронном" функционировании - избавляет от ограничений по времени и не тормозит работу новейших процессоров
- Внутреннее чередование операций с двойными банками способствует непрерывному потоку данных
- Возможность пакетного режима работы вплоть до полной страницы (используя до х16 микросхем)
- Конвейерная адресация позволяет осуществлять доступ к запрошенным вторыми данными, до завершения обработки запрошенных первыми данными

Каково место SDRAM среди будущей памяти PC?

В настоящее время, FPM DRAM и EDO DRAM составляют большинство основного потока памяти PC, но ожидается, что SDRAM быстро станет основной альтернативой стандартной DRAM. Модернизация с FPM памяти до EDO (плюс L2-кэш) увеличивает производительность на 50%, а модернизируя с EDO до BEDO или SDRAM обеспечивает дополнительный прирост производительности еще на 50%. Все-таки, многие поставщики готовых систем видят BEDO лишь как промежуточный этап между EDO и SDRAM из-за присущих BEDO ограничений по скорости. SDRAM, которую они ожидают будет основной памятью при выборе.

Текущие потребности исходят от приложений с интенсивной графикой и требующих больших вычислений, таких, как малтимедиа, серверы, digital set-top boxex (системы для домашнего использования, совмещающие в себе телевизор, музыкальный центр, веб-броузер и т.д.), коммутаторы ATM, и другое сетевое и коммуникационное оборудование, требующие высокой пропускной способности и скоротей передачи данных. В недалеком будущем, тем не менее, промышленные эксперты прогнозируют, что SDRAM станет новым стандартом памяти в персональных компьютерах.

Следующий шаг в развитии SDRAM уже сделан, это DDR SDRAM или SDRAM II

И сделала этот шаг компания Samsung, известная как крупнейший производитель чипов памяти с маркировкой SEC. Официально о выпуске новой памяти будет объявлено в ближайшее время, но уже известны некоторые подробности. Имя новой памяти "Double Data Rate SDRAM" или просто "SDRAM II". Соль в том, что новая синхронная память может передавать данные по восходящему и падающиму уровню сигнала шины, что позволяет увеличить пропускную способность до 1.6 Гб/сек при частоте шины в 100MHz. Это позволит увеличить вдвое пропускную способность памяти по сравнению с существующей SDRAM. Заявлено, что новый чипсет VIA VP3 будет обеспечивать возможность использования новой памяти в системах.

Будте осторожны при выборе SDRAM для применения в системах на основе чипсета i440LX

Как показала практика, материнские платы, сделанные на основе последнего чипсета i440LX очень чувствительно относятся к типу применямой памяти SDRAM. Это связано с тем, что новая спецификация Intel SPD для SDRAM, определяет дополнительные требования к содержанию специальной информации о используемом модуле DIMM, которая должна находиться в маленьком по объемам и размерам элементе электронно-программируемой памяти EPROM, располагающейся на самом модуле памяти. Однако это не означает, что любой модуль SDRAM имеющий на себе EPROM, соответствует спецификации SPD, но в частности, это означает что модуль без EPROM этой спецификации точно не соответствует. Некоторые платы на базе набора i440LX требуют для работы только такие специальные модули, однако большинство существующих прекрасно функционируют и с обычными модулями SDRAM. Данный шаг Intel, по введения стандарта на модули синхронной памяти, связан, прежде всего, со стремлением обеспечить надежную работу и совместимость памяти с будущим чипсетом i440BX, который уже будет поддерживать шинную частоту в 100MHz.


Все еще ищите незнакомое вам слово или его определение? Хотите знать что это значит? Сообщите нам! Мы найдем нужный Вам материал и вышлим ссылку на адрес эл. почты.

Другие термины


Последние термины в этой категории
Топ 10 в этой категории
32-bit accessed RAM
ALU [arithmetic and logic unit] АЛУ [арифметико-логическое устройство]
CAS [column address strobe] Строб адреса столбца
Cache Кэш
CF [CompactFlash]
CRAM [card random access memory]
DRAM [dynamic random access memory] Динамическое ОЗУ
ECC [Error Correcting Code]
MRAM [magnetic random-access memory]
on-chip data RAM
 
RIMM [Rambus Inline Memory Module]
RAM [random-access memory] ОЗУ [оперативное запоминающее устройство]
DRAM Refresh Mode
DDR SDRAM [Double Data Rate SDRAM]
Access time Время доступа
FPM RAM [Fast Page Mode RAM]
EDO DRAM [Extended Data Output Dynamic Random Access Memory] Динамическая память произвольного доступа с расширенным выво
SIMM [single in-line memory module] Модуль памяти с одинарным входом
SDRAM [Synchronouse DRAM] Синхронное ОЗУ
BEDO DRAM [Burst EDO DRAM] Пакетная EDO DRAM

Осталные термины в данной категории

32-bit accessed RAM
Access time
ALU [arithmetic and logic unit]
BEDO DRAM [Burst EDO DRAM]
C-RIMM [Continuity-RIMM]
Cache
CAS [column address strobe]
CF [CompactFlash]
CRAM [card random access memory]
Cycle time
DDR SDRAM [Double Data Rate SDRAM]
DIMM [dual in-line memory module]
DRAM Idle Timer
DRAM Refresh Mode
DRAM [dynamic random access memory]
ECC [Error Correcting Code]
EDO DRAM [Extended Data Output Dynamic Random Access Memory]
FPM RAM [Fast Page Mode RAM]
MRAM [magnetic random-access memory]
on-chip data RAM
QDRAM [quad-data RAM]
RAM [random-access memory]
RAS [row address strobe]
RDRAM [Rambus DRAM]
RIMM [Rambus Inline Memory Module]
SDRAM [Synchronouse DRAM]
SGRAM [Synchronous Graphics Random Access Memory]
SIMM [single in-line memory module]
SRAM [static random access memory]

Последние термины

 » Читать еще термины
»100Base-FX
»IEEE [Institute of Electrical and Electronics Engineers] » ИИЭЭ [Институт инженеров по электротехнике и электронике]
»ANSI [American National Standards Institute] » НИС [Национальный Институт Стандартизации США]
»OSI [open system interconnection] » ВОС [Взаимодействие открытых систем]
»ISO [International Standards Organization] » МОС [Международная Организация по стандартизации]
»OSI model » Модель OSI
»data link layer » Канальный уровень
»network layer » Сетевой уровень
»transport layer » Транспортный уровень
»session layer » Сеансовый уровень
»PY [phisical layer] » Физический уровень
»representation layer » Представительский уровень
»application layer » Прикладной уровень
»100Base-T
»100Base-TX

Рассылка
Файлы
Новости
Статьи


Авторские права HardVision Digital © 2001-2024 | Дизайн и программирование by {digit}
При использовании материалов сайта, ссылка на источник обязательна.
Ведется регулярная проверка ворованного контента в Интернете алгоритмом Copyscape.